

Research for a Life without Cancer

Medizinische Fakultät Mannheim der Universität Heidelberg

Universitätsklinikum Mannheim

Prec-P-01

Preclinical investigation of new targeted combination therapies in cutaneous T-cell lymphoma

Özge Çiçek Şener^{1,2,3}, Tobias Hein^{1,2,3}, Jana Dorothea Albrecht^{1,2,3}, Jochen Sven Utikal^{1,2}, Jan Peter Nicolay^{1,2,3}

¹Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany ²Department of Dermatology, Venereology and Allergy, University Medical Center Mannheim, Ruprecht-Karl-University of Heidelberg, Mannheim, Germany, ³Section of Clinical and Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany ***Email: oezgecicek.sener@dkfz-heidelberg.de**

I. Introduction

Sézary syndrome (SS), the leukemic variant of cutaneous T cell lymphoma (CTCL), shows high relapse rates and poor prognosis, which complicates the clinical course as well as the treatment. The circulating atypical T cells known as Sézary cells (SC) display a CD4+/CD8- T helper cell phenotype.

Due to frequent relapses and treatment-related side effects of current therapies as well as progressive therapy resistance of SS, there is an urgent need for the development of effective and well-tolerated therapeutic options. The malignant T cell population in CTCL is characterized by acquired resistance towards cell death rather than an increased proliferation rate. Therefore, nuclear factor κB (NF- κB) represents one important trigger structure that can render a cell resistant to cell death stimuli.

 Monotherapies were not able to reduce Sézary cell counts in the blood, however, combination therapy consisting of DMF and ECP led to complete remission.

III. Aim

- Investigate ECP and DMF as a novel combined therapy in CTCL cell lines and understand their synergistic effects based on immunomodulation and cell death.
- Identify underlying molecular mechanisms of this new therapeutic approach.

Mimicking combination therapy in vitro and ex vivo

IV. Combination therapy induces higher cell death than monotherapies

Restoration of cell death via combination therapy

V. p50 and phosho-p65 activity in CTCL cell lines

p-p65

Combination treatment reduced the expression of both p50 and phosphorylated p65. HH cells were analyzed for p50 and p-p65 expression using flow cytometry. Cells were treated with 30μ M DMF and 2J UVA alone and in combination, as well as with TNF α as a positive control. (n=1). After 24h, combination treatment reduced p50 activity, however, phospho p65 activity was also reduced by UVA monotreatment.

DMF and UVA synergistically induce cell death in CTCL cell lines and primary patient SS cell. A Cell death assay in SeAx, Hut78 and HH cells 3h and 24h after DMF, UVA, or combination treatment. Significance is indicated by the p value scale (n=1) (*p < 0.05; **p < 0.01, one-way Anova) **B** FACS analysis of apoptosis in SS patient-derived cells after 24, 48 or 72 h of indicated treatments.

VI. Conclusion

- CTCL cell lines show unique cell death patterns in response to combination therapy consisting of DMF and UVA irradiation
- SS patient cells show different responses to the combination treatment depending on the previous therapies the patients received
- Further analysis regarding the effect of the combination therapy on the Thioredoxin-1 induced NFKB inhibition will be conducted
- Single cell RNA sequencing analysis in patient samples will unveil the involved pathways