

Genetic Screening Of CD30-Positive Lymphoproliferations - Oncogenic mutations and gene fusions in CD30-positive lymphoproliferations and clonally related mycosis fungoides occurring in the same patients-

K.Maurus^{1,2}, S. Roth^{1,2}, S. Appenzeller², M. Goebeler^{2,3}, A. Rosenwald^{1,2}, E. Geissinger^{1,2}, M. Wobser^{2,3}

¹Institute of Pathology, University of Wuerzburg, ²Comprehensive Cancer Center Mainfranken, University Hospital Wuerzburg, ³Department of Dermatology, University Hospital Wuerzburg

Karai et al., Am J Surg Pathol. 2013; Feldman et al., Leukemia. 2009; Velusamy et al., Blood. 2014, Maurus et al., JID. 2020, Melchers et al., Am J Surg Pathol. 2020

- \rightarrow 50 % of LPD patients exhibit an activating genetic alteration within the JAK-/STAT-signaling pathway
- Two patients with concomitant or sequentially occurring distinct lesions of both CD30-positive LPD as well as CD30negative MF
- Disease course of at least 5 years and a remarkably long follow-up of over 10 years in total
- corresponding well-documented clinicopathological correlation of each assessed lesion

→ to decipher the molecular alterations of clonally related CD30-positive LPD and MF occurring in the same two patients

library preparation \rightarrow hybrid capture library prep. \rightarrow anchored multiplex Next Generation Sequencing (Illumina) **Next Generation Sequencing** Data analyses and interpretation Data analyses and interpretation **Bioinformatics** PubMed Archer Analysis Version 5.1.7 Cosmic PubMed, ClinVar Quiver... dbSNP onkoKB Clvic ...

Results

Fusion prevalence

 \rightarrow all lesions belonging to one patient, including MF, show identical Janus kinase fusion transcripts

 \rightarrow oncogenic fusion transcripts comprise effector kinase domains of the Janus kinases TYK2 and JAK2

→ oncogenic fusion transcripts contain dimerization domain of fusion partners

ILF3-JAKZ	ILF3-JAKZ	ILF3-JAKZ	ILF3-JAKZ	ILF3-JAKZ
DNMT3Amut	DNMT3Amut	DNMT3Amut	DNMT3Amut	DNMT3Amut
PLCG1mut	PLCG1mut	PLCG1mut		
	140 180	165 195	40 180	165 195
162bp	162bp	162bp	162bp	162bp

 \rightarrow T-cell receptor analyses display cognitional monoclonal T-cell populations in MF and CD30-positive LPD (*TRG*)

- \rightarrow RNA panel sequencing reveals unifying oncogenic JAK2 Janus kinase fusion transcripts
- \rightarrow patient 2 shows divergent PLCG1 and unifying DNMT3A mutations

Conclusion

- LyP, cALCL and MF in the same patient share unifying genetic biomarkers, including T cell receptor rearrangements (TRG) and oncogenic Janus kinase fusion transcripts pointing to a common progenitor cell and a common genetic origin
- LyP, cALCL and MF in the same patient additionally show divergent genetic features; this might explain different evolutionary paths towards different entities
- STAT5A mutation in patient 1 is strictly associated with CD30 expression

katja.maurus@uni-wuerzburg.de

Wobser M@ukw.de