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DESIGN AND CONSTRUCTION OF A CELLULAR COFFERDAM FOR 
THE PACIFIC ACCESS CHANNEL 

by 
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ABSTRACT 

As part of the Panama Canal Long Range Master Plan, the Panama Canal Authority (ACP) initiated in 

1997 the expansion of the capacity of the waterway. The Expansion Project included the construction 

of additional locks and navigation channels to allow the transit of Post-Panamax vessels. This project 

required a new navigation channel to connect the Gaillard Cut with the new Pacific Locks. This channel 

was designated as the Pacific Access Channel (PAC). The channel is approximately 7.8 km long and 

218 m wide, with a water elevation at 26.82 m PLD (Precise Level Datum for the Panama Canal) and 

is separated from the Miraflores Lake (elevation 16.45 m PLD) by a new dam. ACP divided the Pacific 

Access Channel works into four separate construction packages. 

One of those packages, named PAC-4 included the construction of one of the two embankment dams 

required to separate the new access channel from the Miraflores Lake, that have a difference elevation 

of almost ten meters. These dams were designated as Borinquen 1E and 2E; the last one was included 

in the Locks Contract while the Borinquen 1E dam was built during the PAC-4 contract. The design of 

the PAC-4 required that the contractor excavate to ground elevations below the Miraflores Lake level. 

Therefore, it was required the construction of a cellular cofferdam and an embankment cofferdam in 

order to provide the adequate conditions for the required excavation works. This cofferdam was 

designed by the ACP design team and the review process was performed by URS Corp., who was the 

consultant in charge of the design of the embankment 1E. The paper describes the design criteria 

assumed; the possible additional uses of this structures; and the construction process itself. 

 

1. INTRODUCTION 

In 1997, the Panama Canal Authority (ACP) initiated the expansion project of the waterway in order to 

increase its capacity. The Expansion Project included the construction of additional locks and navigation 

channels to allow the transit of Post-Panamax vessels. This project required a new navigation channel 

to connect the Gaillard Cut with the new Pacific Locks. This channel was designated as the Pacific 

Access Channel (PAC). The new channel is approximately 7.8 km long and 218 m wide, with a water 

elevation at 26.82 m PLD (Precise Level Datum for the Panama Canal) and is separated from the 

Miraflores Lake (elevation 16.45 m PLD) by a new dam. 

ACP divided the Pacific Access Channel works into four separate construction packages. The first three 

contracts, denominated PAC-1, PAC-2 and PAC-3, were executed from 2007 until 2009, and the design 

contemplated to excavate from the natural ground elevation down to elevation 30.00 PLD. The last 

excavation contract, named PAC-4, was designed to remove all the remaining material down to 

elevation 9.14m PLD (bottom of navigation channel); this contract also included the construction of one 

of the two embankment dams required to separate the new access channel from the Miraflores Lake, 

that have a difference elevation of almost ten meters. These dams were designated as Borinquen 1E 

and 2E; the last one was included in the Locks Contract while the Borinquen 1E dam was built during 

the PAC-4 contract. The design of the PAC-4 required that the contractor excavate to ground elevations 

below the Miraflores Lake level; therefore, it was required the construction of a cellular cofferdam and 

an embankment cofferdam in order to provide the adequate conditions for the required excavation 

works. This cofferdam was designed by the ACP design team and the review process was performed 

by URS Corp., who was the consultant in charge of the design of the embankment 1E. 

_____________________ 
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Most cofferdams can be built either on rock or on sand and gravel; and the design varies depending on 

the soil condition. For the structure required in this project, given the geology of the area, the cofferdam 

was designed for the case where is resting on rock. It is important to note that the cofferdam was built 

as a separate structure from dam 1E, which will not depend on the cofferdam for its own stability.  

The paper describes the design criteria assumed for the cofferdam, including its alignment, geological 

conditions under the structure and a summary of the design procedure used. In addition, the paper will 

address the construction process from the owner’s point of view, including some changes proposed by 

the design team and also by the contractor due to problems at foundation levels. 

 

2. PROJECT DESCRIPTION 

The new Borinquen Dam 1E was part of the works for the Pacific Access Channel (phase 4), and begins 

at the Pedro Miguel Locks in the north and extends south across Miraflores Lake to Fabiana Hill, a 

rocky hill outcropping north of the Miraflores Locks (see Figure 1). This dam and the other three included 

in the Locks Contract, separates the Miraflores Lake (at elevation 16.75m PLD approximately) from the 

new navigation channel (at elevation 25.90m PLD approximately). Since the construction of this dam 

involved excavation of the foundation down to elevation 0.00m PLD, it was necessary that the contractor 

built a cofferdam in order to allow excavation in the dry. 

The cofferdam was required where Dam 1E construction would extend into or near Miraflores Lake, 

between approximately Stations 1+000 and 2+700 (see Figure 1). The north end of the cofferdam was 

tied into the west approach wall of the Pedro Miguel locks. The south end of the cofferdam was tied into 

existing ground. The 1.8 km long cofferdam has a maximum height of about 17.00m. 

 

Figure 1: Dam 1E and cofferdam location 

 

3. DESIGN CRITERIA 

Most cofferdams can be built either on rock, where little or no overburden exists, or on sand and gravel; 

and the design varies depending on the soil condition. For the structure required in this project, given 

the geology of the site, the cofferdam was designed for the case where is resting on rock. It is important 

to note that the cofferdam was built as a separate structure from Dam 1E, which does not depend on 

the cofferdam for its own stability.  

In general, the design of a cofferdam must satisfy the following criteria: 

a. The structure must be able to withstand all the various loads applied to it; 

b. The quantity of water entering the cofferdam must be controllable by pumping; 

c. At every stage of construction the formation level must be stable and not subject to uncontrolled 

heave, boiling or piping; 

d. Deflection of the cofferdam walls and bracing must not affect the permanent structure or any 

existing structure adjacent to the cofferdam; 

e. Overall stability must be shown to exist against out of balance earth pressures due to sloping 

ground or potential slip failure planes; 
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3.1 Alignment 

In order to accomplish the performance described above, the design of the cofferdam needs to consider 

several design criteria. One of them is the final alignment. This alignment was first outlined based on 

the design of Dam 1E (URS, 2008) and the final surface of the outcropping rock (weathered and sound). 

The cofferdam was originally located approximately 30.00 m east of the outboard toe of Dam 1E and 

west of the shipping channel. The cofferdam was located in such a way not to interfere with the 

construction of Dam 1E and the shipping channel in Miraflores Lake. Due to the preliminary design of 

Dam 1E, the original cofferdam alignment required a PI between stations 3P+494.08 and 3P+778.71. 

This was done in order to maintain the cofferdam structure close to the toe of the dam and to reduce 

construction costs. 

The final alignment of the cofferdam was defined based on various aspects as describe below: 

a. The cofferdam must be located to avoid interference with construction of Dam 1E and the 

shipping channel in Miraflores Lake; 

b. Minimum clearance between the cofferdam and the outboard toe of Dam 1E shall be 10 m; 

c. The cofferdam must satisfy the operation requirements. In the middle section of the cofferdam, 

the structure will be used as a tie-up station (see fig. 2). The Cofferdam shall be straight in the 

area of the tie-up station. (approx. 500 m); 

d. The northern closure will be the south end of Pedro Miguel Locks;  

e. In the southern closure the cofferdam will extend until top of weathered rock reach elevation 

18.00m PLD. 

The final alignment in figure 2 shows the north and south ends and also where the structure changes it 

size and type. It changes size because the structure may be used as a tie-up station only in its middle 

portion. The rest of the structure will not be treated as such and therefore a more economical design 

has been implemented. On the other hand, as shown in Figure 2, the cellular cofferdam extends from 

the north end up to a point south of station 4P+249 where the geology allows a change in the type of 

cofferdam to be used. At this point, the rock is above elevation 18.00m PLD (see Section 4) and 

therefore a cellular cofferdam in uneconomical and an embankment cofferdam with sheet piles cutoff 

may be used as describe in Section 3.2. 

In addition, since the cofferdam structure is required to keep the excavation area for the dam foundation 

completely dry, it was decide that in the north (Pedro Miguel Locks) the cofferdam would be extended 

and tied into an existing slope to reduce the risk of flooding. In order to ensure the water-tightness of 

the system, it was also decided to design a grout curtain or a similar structure extending from the 

cofferdam to the locks wall as shown in Figure 3. In the south end, the cofferdam will tie into the existing 

ground at Point #5 (see Figure 2). 

   

Figure 2: Cofferdam final alignment 
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Figure 3: North tie-in of cofferdam (at Pedro Miguel Locks) 

 

3.2 Cofferdam Alternatives 

The original cofferdam concept required for the construction of Dam 1E consisted of a single-diameter 

cellular cofferdam to be built throughout the entire 1.8 km long alignment. However, analysis of the 

possible future uses of the structure and the geology of the area, lead the Design Team to consider two 

different alternatives along the alignment in order to allow tying up operations and also to reduce the 

cost of the structure: 

a. Embankment cofferdam with sheet pile cutoff 

This first alternative was considered for those areas where the rock elevation was above 

18.00m PLD and the driving of the flat sheet piles (required for cellular cofferdams) was 

determined to be unnecessary (as well as impractical). Evaluation of the geology of the area 

(see Section 4) suggested that south of Station 4P+429 the rock elevation was above the 

required 18.00m PLD; therefore, and to avoid any seepage through the rock, it was decided 

that an embankment cofferdam with a sheet pile cutoff (see Figure 4) was enough to guarantee 

impervious condition during the excavation works required. 

              

Figure 4: Typical Section of the Embankment cofferdam with sheet pile cutoff 

This type of cofferdam was constructed in the south part of the cofferdam alignment, specifically 

from Station 4P+429 up to the south end where the structure must tie into the existing ground at 

Fabiana Hill. 
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b. Cellular sheet pile cofferdam 

Those areas where the weathered rock elevation is below 18.00m PLD, the cellular sheet pile 

cofferdam alternative was used. This alternative was chosen over the Float-in-place concrete 

caisson cofferdam because is more economical and also because ACP has already design this 

type of structures in the past. 

The Panama Canal operates another tie-up station in the Gaillard Cut which was design under 

the same concept. Having ACP the experience of designing a similar structure and considering 

that this existing cofferdam is presently being used as a tie-up station, the Design Team 

proposed that the remaining cofferdam was design as a cellular cofferdam instead of float-in-

place concrete caisson. In addition the Team proposed that a portion of such a cofferdam might 

be used as a tie-up station.  

The new cofferdam structure is located in the Miraflores Lake, a few hundred meters west of 

the existing navigation channel and north of the existing Miraflores Tie-up station. The existing 

tie-up station is composed of several buoys anchored to the lake floor and therefore there is no 

land access to this facility. The idea of having this structure design as a future tie-up station 

was extensively accepted because it would provide land facilities to the actual operation crew 

and an additional anchoring capacity at Miraflores, which may increase the vessel transit 

through these locks. 

Therefore, it was decided that the middle portion of the structure, between station 3P+494 and 

4P+000 (approximately 500m), were designed for the appropriate tie-up station loads and 

additional earth fill to be placed on top of the cells to reach the required freeboard. 

      

3.3 General Design Criteria 

In addition to the alignment the cellular sheet pile cofferdam design needed to consider several other 

general design criteria as shown in Table 1. 

 Feature/Issue Criteria Remarks 

1. Cofferdam 
Crest Elevation 

18.00 m. The area between Dam 1E and 
the cofferdam will be backfilled 
to the cofferdam crest level. 

2. Miraflores Lake 
Operating Levels 

 Maximum: elevation 16.75 m 

 Minimum: elevation 16.45 m  

 

3. Operations  For tie-up station, foundation level must 
allow for Panamax vessel draft. 
o Dredge line on Miraflores Lake side 

of cofferdam will be elevation 2.90 
m.  

 Construction of the cofferdam shall 
minimize impact on shipping operation   

A deck will be constructed on 
top of the cofferdam to allow for 
ship tie-up station.  

4. Foundation  Residual soils or rock: 
o Sheet pile refusal on weathered 

rock, or  
o At least 2 m below SPT N-value of 

50. 
 

 Seepage cutoff must be adequate to 
prevent piping 
o Foundation to be non-erodible, or 

hydraulic gradient to be less than 
0.3 in erodible materials.  

 

 Materials must have 
sufficient strength for static 
and seismic stability, 
eliminate liquefaction 
potential, and minimize 
settlement. 

 All fill, alluvium, Pacific 
Muck and unsuitable soils 
will be removed from the 
cofferdam foundation in 
place under wet 
conditions.  

5. Backfill   Between Dam 1E and Cofferdam:  Zone 
3 rockfill. 

Sheet pile cell fill is ACP 
specification. 
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 Feature/Issue Criteria Remarks 

 Within sheet pile cells:  Free-draining 
rockfill (minus 150 mm) 

6. Stability  Must have adequate static and seismic 
stability.  

 Check overall cofferdam stability at tie-
up station (draft to allow for Panamax 
vessel) 

Ref:  Design of Sheet Pile 
Cellular Structures, EM 1110-2-
2503.  U.S. Army Corps of 
Engineers, September 1989. 

7. Dead Loads 

(Static) 

 Loads from rockfill on west side of 
cofferdam. 

 Hydrostatic loads. 

 

8. Live Loads  Ship berthing forces from a Panamax 
ship. 

 Operational deck loads. 

 Construction loads. 

Loads to be determined during 
preliminary design of the 
cofferdam. 

9. Seismic Loads  Backfill loading. 

 Inertial loads of the cofferdam itself. 

 Hydrodynamic loads from Miraflores 
Lake. 

 

10. Drainage of 
Seepage 

Provide for drainage of seepage from Dam 1E 
through cofferdam to Miraflores Lake.  

Consider Miraflores Lake 
operating levels to set drainage 
invert elevation through 
cofferdam.  

11. Corrosion 
Resistance 

Must resist corrosion in brackish water 
conditions. 

Consider wave splash and 
fluctuating Miraflores Lake 
levels. 

 

TABLE 1: Design criteria for the cofferdam 

 

4.  FOUNDATION CONDITIONS 

The proposed cofferdam footprint is underlain by varying depths of fill. Beneath the fill, the cofferdam is 

primarily underlain by the La Boca formation, and Pedro Miguel agglomerate. The designers of the Dam 

1E concluded that the fill and residual soil materials are not suitable for dam foundation, so they will be 

stripped before construction of the embankment. However, for the case of the cofferdam this material 

is soft enough so the sheet piles will be driven through them until reaching hard rock (top of weathered 

rock), or the predefined elevation. 

Once the cells are constructed and ready to be backfilled, this material will be removed. Only in the 

portion where the Tie-Up station will be constructed, this soft material will be dredged prior to the 

construction to avoid future interference of the dredge operations with the final structure. 

 

4.1 Geological cross sections 

Along the alignment of the cofferdam ACP drilled several boreholes to better characterize the geology 

right underneath the cofferdam structure. These new boreholes complemented many others already 

drilled in the area. As a result, ACP geologist developed a longitudinal cross section showing the 

location of the fill, overburden, top of weathered rock and top of sound rock. In addition, several cross 

sections were developed along the cofferdam alignment in order to provide the designer with more 

precise details on how the cofferdam would be founded on the soil. In this paper only two cross section 

are shown.  

Using this longitudinal cross section, the Design Team was able to determine the location where the 

cofferdam would be switched from a cellular structure into an embankment cofferdam. It was decided 

that from station 4P+249.26 extending south across low lands to Fabiana Hill the rock elevation was 
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high enough so a cellular cofferdam is no longer required. Therefore, in this section an embankment 

cofferdam would be used instead. 

All the cross section developed by ACP were evaluated and analyzed by the Design Team. It was 

concluded that section 3P+330.26 (figure 5) was the most critical one within the non tie-up portion of 

the cofferdam, while section 3P+778.71 (figure 6) was the most critical within the portion assigned to 

the tie-up station. 

 

Figure 5: Cross section at station 3P+330.26 (non tie-up station) 

 

 

Figure 6: Cross section at station 3P+778.71 (tie-up station) 

 

5. COFFERDAM DESIGN 

The design of the cofferdam was done following the standard procedure developed by the Tennessee 

Valley Authority (TVA), also known as the Terzaghi’s Method. Although there are other methods 

available, the TVA procedure is simple and one of the most commonly used around the world. 

Basically, a cellular cofferdam is a gravity retaining structure formed from the series of interconnected 

straight web steel sheet pile cells filled with soil, usually sand, or sand and gravel. The interconnection 

provides water-tightness and self-stability against the lateral pressures of water and earth. The circular 

one (as the one being design), consists of individual large diameter circles connected together by arcs 

of smaller diameter. These arcs generally intercept the circles at a point making an angle of 30, 45 or 

even 90 degrees with the longitudinal axis of the cofferdam. The prime feature of the circular type 

cofferdam is that each cell is self-supporting and independent of the next. 
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The design of a cellular cofferdam proceeds much the same as that of an anchored wall. Before the 

design can be initiated, the necessary controlling dimensions must be set. In this case, the height of the 

structure is a known value so the next step was to choose an approximate diameter, D, and the 

equivalent width, B. 

One additional parameter that needed to be defined was the location of the water table inside the cell, 

or the so called saturation line. This basically refers to the degree of saturation within the cell fill and its 

location is influenced by a number of factors including the condition of the pile interlocks, the 

permeability of the cell fill, whether a berm is used, and the number and position of weep holes on the 

inside row of piling. In the present design, a horizontal line, at an elevation so chosen as to represent 

the average expected condition of saturation, was assumed in order to simplify computations. 

Once all these parameters were defined, the next step was to verify the stability of the cells. Since the 

cells will be founded on rock, several types of failures were needed to be checked: a) Sliding on the 

base; b) Overturning; c) Shear failure on centerline of cell; d) Horizontal shear; e) Excessive interlock 

tension; and f) Loss of internal stability 

 

5.1 Design of the non Tie-Up and tie-up sections 

The non tie-up section of the cofferdam applies to those areas that will not be used for berthing vessels. 

These areas have been identified as those close to the Pedro Miguel Locks (between point 1 and 2 in 

figure 2), and to the southern portion of the alignment inside the Miraflores Lake (between point 3 and 

4 in figure 2). A review of the geological cross-section in these areas revealed that the most critical is 

the one identified as 3P+114.08; therefore, this section has been adopted as typical and the design will 

be performed based on its features. 

On the other hand, the tie-up section of the cofferdam applies to that area that will be used for berthing 

vessels. This area has been identified in the middle section of the cofferdam alignment, between point 

2 and 3 in figure 2. A review of the geological cross-section in this area revealed that the most critical 

is the one identified as 3P+778.71; therefore, this section has been adopted as typical and the design 

will be performed based on its features. 

The design of the cofferdam has considered two different loading conditions that control the cell 

geometry and stability of the structure: 

a. Construction condition: Condition that applies during the time the cofferdam is being 

constructed;   

b. Long term condition: Condition that applies once the construction of the cofferdam has finished 

and all the permanent loads are applied. 

For the evaluation in either condition, the material properties were maintained exactly the same. Table 

2 shows a summary of these properties, while Table 3 summarizes all the assumptions made for the 

cofferdam design. 

    

TABLE 2: Material properties 

 

Friction Angle Cohesion Ka Ko gsat g'

Condition (f) (kN/m
2
) (kN/m

3
) (kN/m

3
)

Fill/Muck All 17
o

0.00 0.548 ----- 16.60 6.79

Cell fill All 34
o

0.00 0.254 ----- 20.60 10.80

Backfill All 42
o

0.00 0.183 0.331 22.00 12.19

La Boca Found. (seismic) All 32
o

0.00 ----- ----- ----- -----

La Boca Found. (static) Non Tie-up constr. 27
o

0.00 ----- ----- ----- -----

La Boca Found. (static) Non Tie-up long term 29
o

0.00 ----- ----- ----- -----

La Boca Found. (static) Tie-up constr. 26
o

0.00 ----- ----- ----- -----

La Boca Found. (static) Tie-up long term 27
o

0.00 ----- ----- ----- -----

Material
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TABLE 3: Assumptions made for the design of the cofferdam 

 

5.1.1 Construction stage condition 

During this stage the cofferdam is analyzed assuming that the inboard side of the cofferdam has been 

fully excavated and the water on the Miraflores Lake exerts the maximum pressure on the structure. In 

addition, the overburden or fill material in the lake contributes to increase the active pressure. Figure 9 

shows the typical cross-section assumed for this portion of the structure. 

It is important to note from Table 3, that there is a difference in the height of the cell between the non 

tie-up and tie-up section. This difference results from the geological exploration, which indicated that at 

station 3P+778.71 (tie-up section), the top of the weathered rock was located at elevation 1.30m PLD 

and not at elevation 3.30m PLD.  

As for the saturation line inside cell, it was assumed with a slope 1:1 from lake level to TWR; therefore 

the water elevation at the mid-point inside the cell are different for both cases. This slope is based on 

the filling material as shown in the USACE EM-1110-2-2503 manual (USACE, 1989);  

In figure 7 it is shown the typical cross section used for design. Since the structure is located in a 

seismically active area, the stability of the cofferdam was verified for the static condition and also the 

seismic condition. Figures 8 and 9 show the load distribution on the cell for both conditions. 

                        

Figure 7: Typical cross-section for the non Tie-Up section during the construction stage 

 

Construction Long Term Construction Long Term

Berm outboard Not included Not included Not included Not included

Passive resistance included Not included Not included Not included Not included

Pulling force from vessel --- --- --- 563.8kN

Loading from compaction surcharge --- Not included --- Not included

Aditional Surcharge --- Not included --- Not included

Height of cell 14.70m 14.70m 16.70m 16.70m

Additional height (for loading evaluation) --- --- --- 3.65m

Miraflores Lake Level (outboard side) 16.75m PLD 16.45m PLD 16.75m PLD 16.45m PLD

Saturarion level (inside cell - midpoint) 10.05m PLD 16.45m PLD 9.05m PLD 16.45m PLD

Unit Weight gwet assumed gsat gsat gsat gsat

Friction coefficient d (outboard side) 0
o --- 0

o ---

Friction coefficient d (inside cell) 22
o

22
o

22
o

22
o

Backfill condition --- At Rest --- At Rest

Water inside fill/muck (seismic design) Restrained --- Restrained ---

Water inside backfill (seismic design) --- Free --- Free

Section Analyzed

Non Tie-Up Tie-UpParameter
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Figure 8: Horizontal pressure components acting on the cofferdam during the construction 

stage (static loading) 

 

                       

Figure 9: Horizontal pressure components acting on the cofferdam during the construction 

stage (seismic loading) 

 

5.1.2. Long term condition 

During this stage the cofferdam is analyzed with all permanent loads applied to the structure. The area 

between Dam 1E and the cofferdam has been backfilled to the cofferdam crest level. It is also assumed 

that on the inboard side of the cofferdam all the material (fill/muck) has been removed. This is assumed 

since this condition might happen in the future as part of normal operating procedures Figure 10 shows 

the typical cross-section assumed for this portion of the structure. 

One significant difference at this stage between the non tie-up section and the tie-up section is the 

pulling force from vessels. For the non tie-up section, no pulling forces exerted from vessels is 

considered. For the tie-up section, the pulling force exerted on the future dock has been calculated 

assuming a Panamax ship with a DWT = 100,000 tons. The formulation of the load components has 

been derived from the literature (Tsinker, 1997). The resulting value is 563.8 kN (total load normal to 

the dock), which has been estimated assuming an horizontal angle () = 30o, a vertical angle () = 20o, 

a pulling force (QB) = 1,000 kN and a 20% increase due to non-uniformities. 
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Figure 10: Typical cross-section for the non Tie-Up section for the long term condition 

 

              

Figure 11: Horizontal pressure components acting on the cofferdam for the long term 

condition (static loading) 

 

             

Figure 12: Horizontal pressure components acting on the cofferdam for the long term 

condition (seismic loading) 
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5.3 Results 

Once the loading conditions have been established and the material properties chosen, the Design 

Team proceeded to evaluate and design the structure according to the criteria and procedures given 

above.  It should be noted that following recommendations of USACE (1989), the stability of the 

structure has been evaluated for three different factors of safety, depending on the loading condition: 

a) F.S. = 1.50 for the long term stage (permanent condition) 

b) F.S. = 1.25 for construction stage (temporary condition) 

c) F.S. = 1.10 @ 1.30 for seismic evaluation (see Tables 4 and 5) 

All the stability analysis performed to the different cross-section and loading conditions were 

implemented in an Excel worksheet. In order to verify the accuracy of such worksheets, the stability 

analyses were also performed by hand and the results cross-checked with the computer results. It is 

important to note that such calculations were performed assuming an equivalent B=0.875D, where 

D=1.25H. The only fixed dimension was the height of the cell, which was a known value before the 

analysis was performed. 

A summary table with all the final stability analysis results is shown in Tables 4 and 5. In addition to the 

resulting factor of safety, it is also presented the minimum strength required by the sheet piles and 

junction elements to comply with stresses imposed on the structure.  

    

TABLE 4: Summary of results for the non tie-up section 

 

      

TABLE 5: Summary of results for the tie-up section 

 

Min. F.S. Min. F.S.

Required 
(1)

Required 
1

Sliding Stability 1.25 1.72 1.50 1.77

Overturning Middle 1/3 Middle 1/3 Middle 1/3 Middle 1/3

Vertical Shear 1.25 2.17 1.50 3.61

Horizontal Shear 1.25 1.83 1.50 2.41

Bursting (piles of cell) < tu/r Req. Min. 3000 kN/m < tu/r Req. Min. 3000 kN/m

Bursting (Tees of cell) < tu/r Req. Min. 3000 kN/m < tu/r Req. Min. 5000 kN/m

Seismic Sliding Stability 1.30 1.42 1.30 1.09 
(3)

Seismic Overturning Stability Middle 1/2 Middle 1/2 Middle 1/2 Middle 1/2

Seismic Vertical Shear 1.10 1.20 1.10 0.77 
(3)

Seismic Horizontal Shear 1.10 1.01 
(2)

1.10 1.25

Notes:
1
 According to TVA, USS Steel Sheetpiling Design Manual & others

2
 Analysis does not include effect of berm located in the inboard face, which will increase the FS above 1.1

3
 Values below the minimum required factor of safety

Failure Mode Long TermConstruction Stage

Min. F.S. Min. F.S.

Required 
(1)

Required 
1

Static Sliding Stability 1.25 1.82 1.50 1.77

Overturning Middle 1/3 Middle 1/3 Middle 1/3 Middle 1/3

Vertical Shear 1.25 2.37 1.50 2.89

Slipping between piling & fill 1.25 1.62 1.50 1.77

Horizontal Shear 1.25 2.07 1.50 2.16

Bursting (piles of cell) < tu/r Req. Min. 3000 kN/m < tu/r Req. Min. 3500 kN/m

Bursting (Tees of cell) < tu/r Req. Min. 3000 kN/m < tu/r Req. Min. 5500 kN/m

Seismic Sliding Stability 1.30 1.52 1.30 0.98 
(2)

Seismic Overturning Stability Middle 1/2 Middle 1/2 Within Base Within Base

Seismic Vertical Shear 1.10 1.28 1.10 0.63 
(2)

Seismic Horizontal Shear 1.10 1.12 1.10 0.85 
(2)

Notes:
1
 According to TVA, USS Steel Sheetpiling Design Manual & others

2
 Values below the minimum required factor of safety

Failure Mode Long TermConstruction Stage
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It is important to note that in Table 4 and 5 the footnotes 2 and 3 indicates that these values are below 

the minimum factor of safety required. This is due that the seismic analysis was done assuming that 

the response of the cell fill is governed by its drained strength. However, during an earthquake, its short-

term strength is greater than the drained strength, suggesting that the real dynamic factor of safety is 

likely to be greater than the static one. 

Once the equivalent width (B or we) was determined, the geometry of the cells was then defined. This 

was done with the help of tables or with computer programs. Several solutions are possible for the 

circular cells with a given equivalent width. In order to determine the final layout of the cells, the Design 

Team based the actual geometry of the cell on the ARCELOR’s geometrical parameter tables found in 

the literature (Arcelor, 2005). The final equivalent width was chosen to be the closest to the one 

determined by empirical relationships; therefore, assuming a fixed B matching the ones presented in 

the table, the rest of the parameters were easily defined. The final values can be found in Table 6 and 

7, and the corresponding definition in Figure 13. 

                                   

TABLE 6: Final layout for the non tie-up section 

 

                                    

TABLE 7: Final layout for the tie-up section 

 

                             

Figure 13: Geometrical values for circular cells 

Parameter Value

Height (H) 14.70 m

Diameter (D) 17.93 (≈ 1.22H)

Equivalent Width (B) 16.34 (≈ 0.911D)

Radius of main cell (rm) 8.97 m

Radius of connecting arcs (ra) 5.98 m

System Length (x) 20.86 m

Junction Tipe 90
o

Angle  48.21
o

N
o
 of sheetpiles in cell (include 4 junction piles) 112 pcs

N
o
 of sheetpiles in arc 19 pcs

Min. Interlock strenght requirement cell piles 3,000 kN/m

Min. Interlock strenght requirement T piles 5,000 kN/m

Parameter Value

Height (H) 16.70 m

Diameter (D) 21.77 (≈ 1.30H)

Equivalent Width (B) 19.84 (≈ 0.911D)

Radius of main cell (rm) 10.89 m

Radius of connecting arcs (ra) 7.86 m

System Length (x) 26.29 m

Junction Tipe 90
o

Angle  47.65
o

N
o
 of sheetpiles in cell (include 4 junction piles) 136 pcs

N
o
 of sheetpiles in arc 25 pcs

Min. Interlock strenght requirement cell piles 3,500 kN/m

Min. Interlock strenght requirement T piles 5,500 kN/m
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6. CONSTRUCTION OF THE COFFERDAM 

The final layout of the cofferdam resulted in a structure consisting of 58 cells, 57 pairs of connecting 

arcs and 462 linear meters of cutoff wall (figure 14 and 15). The cellular cofferdam was designed for 

two different uses, therefore, the size of the cells varies according to the use. In the portion to be used 

as a tie-up station (Section “C” in figure 14) the final cell diameter is 21.64 m and the length is 499.51 

m, which result in 20 cells. On the other hand, in the portion of the cofferdam not used as a tie-up station 

(Section “B” and “D”), the final cell diameter is 17.83 m and the total length is 667.52 m, which results 

in 33 cells. The remaining 4 cells, are located in the north end of the cofferdam, specifically built in an 

existing slope to reduce the risk of flooding (Section “A”). This 4 cells were also constructed with a cell 

diameter of 21.64 m.  

 

Figure 14: Final layout of the cofferdam (north end) 

 

 

Figure 15: Final layout of the cofferdam (south end) 

 

The south end of the cofferdam, was built using an embankment cofferdam with Z piles driven to refusal 

through the middle portion of the embankment (Section “E”). This portion of the structure has a length 

of 462.73 m and the average length of the piles is approximately 15.00 m. 

 

6.1 Construction Methodology 

The PAC-4 contract was awarded to the consortium ICA-FCC-MECO, and they subcontracted the 

consortium GOETTLE – ICONSA for the construction of the cellular cofferdam and the embankment 

cofferdam. Before this contract was awarded to the fore mentioned contractor, ACP had already 

purchased all the sheet piles required for the project, including the straight web piles for the cellular 

cofferdam and the Z piles for the embankment cutoff wall. 

Works began in 2010 and the construction methodology proposed by the consortium was in accordance 

with international practice. First, all unsuitable material within the cell footprint was removed by the 

dredging work. Then, a bathymetric in-survey of the cofferdam installation area was perform to compare 

to the post-dredge bathymetric survey of the dredging subcontractor. This work was performed to 

anticipate the expected volume of cell fill. 
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6.1.1 Templates 

In order to construct the cofferdam cell, it was necessary first to design and fabricate the templates 

which are used to drive the piles around. The templates consisted of two steel rings spaced vertically 

3.0 m, which can be anchored into the correct position by means of ten spuds (tubular piles).  

For this project, four different type of templates were required: a) for the 21.77 m cells, b) for the 17.93 

m cells, c) for the connecting arcs between the same size cells, and d) for a special condition connecting 

arcs between two cells of different diameters. The templates were fabricated in New Orleans, USA, and 

then transported on barges to the project site in Panama; in figure 16 it is shown the templates. 

 

   Figure 16: Templates being transported 

 

6.1.2 Marine cellular cofferdam 

There were four cofferdam construction fronts: three fronts working from barges for cells in the dredged 

area, and one front working on land for cells outside the dredged area (cells 1-4 and 54-58). Each of 

the three marine teams were equipped with two floating templates. These templates were designed in 

such a way that the top ring of the template floated some 0.46 m above the water surface. The use by 

each marine crew of two templates with associated spud piles enabled the crews to work on a new cell 

while the previous cell were backfilled. 

Once the template was floated to the cell footprint the spud piles were installed through spud wells to 

fix template on location; then, four sheet key (H-piles welded to a sheet pile) were driven into weathered 

rock to completely fix the template (see figure 17).  

For the installation of the sheets between key sheets, the contractor first attached some of them to the 

template using spot welding directly to the template, then, in a sequential order, the sheet piles were 

vibrated into top of weathered rock ("near" refusal or to design tip elevation, whichever occurred first). 

This procedure was done in multiple passes, each pass was approximately 1.50 m in vertical length, 

and in a circular pattern. At the end, to reach the refusal criteria or to reach the design tip elevation, an 

impact hammer was used, centering the hammer over the sheet interlocks at the hammer's high impact 

energy and in conformance with the approved pile refusal criteria (see figure 18). 

After reaching the refusal criteria or design tip elevation, the sheet piles were cut as required to install 

the cell fill using a conveyor. Initially, the cut off sheet were handled by the piling crane and later, after 

some cells were completely filled, a track excavator or other suitable equipment handled the cut off 

sheets. 
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Figure 17: Template in position 

 

Figure 18: Driving piles in a cell by vibration 

 

For the placement of the backfill, three temporary earthen access ramps were constructed prior to start 

of the works: one at cell 5, one at cell 14, and one at cell 46. At the end of each ramp there was a 

temporary access trestle that served as bridge between the fill and the cofferdam. These trestles were 

designed such that trucks and equipment could access the cell without damaging the sheet piles at that 

juncture. 

The filling procedure of a given cell was only possible when such cell was closed and driven to refusal. 

Only the first cell of each working front was filled directly from the trestle using a 30.00 m long conveyor. 

The rest of the cells were filled using the same conveyor placed on top of the adjacent finished cells, 

with the discharge end over the center of the cell. The conveyor was fed by either a front-end loader or 

an excavator. Figure 19 shows this operation. Important to note that material from the conveyor was 

deposited in the cell at the center at all times, so the backfill was distributed evenly to avoid differential 

stresses or excessive development of interlock tensions. 
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Figure 19: Filling operation of the cells 

 

At each cell, a drainage system was install according to the drawing plans and specifications. The 

drainage system consists of two 0.30 m diameter PVC pipes with filter fabric wrap placed in the inboard 

and outboard face of the cofferdam with the pipe discharge invert located at 17.00 m, PLD. 

 

6.1.3 Connecting arcs 

These structures are required to tie in independent cells all together, and are joined to the main cells 

by special T-piles. The placement of sheet piles in these arcs required the use of special templates also 

fabricated in New Orleans and transported in barges to the project site. 

Prior to beginning the fill of the main cell, it is required to install two starter sheets at each of four SWC 

Weldon locations. The SWC is the point at which the arcs connect to the circular cell. The template was 

not used to set these starter sheets, which are not driven to refusal prior to initiating adjacent cell fill 

placement. The connecting arc template was only placed after completion of cell fill placement for both 

adjacent cells and was used to set the remaining sheets within the connecting arcs. 

Only after the two adjacent cells were completely backfilled and the connecting arcs were driven to 

refusal, the connecting arcs were backfilled either directly from a front-end loader or excavator, or using 

chute, in both cases discharging at the center of the segment, so that the material was distribute evenly 

within the segment. 

 

 6.1.4 Landside cofferdams 

For the construction of the landside cofferdam, the land crew utilized the same template as the marine 

crews. They began the construction in the north side of the alignment, in other words, the 4 land side 

21.64 m diameter cells and then the same land crew built the remaining five 17.83 meter diameter land-

side cofferdams located in the south end. 

First, a trench was excavated the approximate width of the cofferdams to a depth sufficient to verify that 

no unsuitable material was encountered within the cells. This depth was approximately 4 m. The 

cofferdam template was then built in place, as shown in figure 20. 
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Figure 20: Landside cofferdam in the south end 

 

 

Figure 21: Landside cofferdam in the north end after cutting off sheet piles 

 

Unlike the cell built in water, no backfill was required for these cells and only driving the sheet piles to 

the refusal criteria or the design tip elevation was required. Once the crew finished using the template, 

it was removed in pieces and then re-used on the next and adjacent land-side cell, and so on (see figure 

21). 
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6.1.5 Embankment cutoff wall 

The work consisted in the construction of 464.45 meters (6.975 m2) of a sheet pile “Z-wall” using 15.00m 

long PZC-26 sheets, and the construction of embankment along sheet pile Z-wall. 

The sheet piling was installed in a sequential manner from north (junction with the southernmost cellular 

cofferdam cell) to south. A template was installed at the starting location, and the surveyors were given 

the correct alignment and centerline of the wall. 

The template consisted of a 24” steel I-beam whaler that lied down on the ground along the alignment 

of the face of the wall. This whaler was supported off the ground by 14” beams, 1.80m long, which lay 

on the ground, perpendicular to the whaler and all welded together as a unit. This frame, in turn, was 

fixed to the ground by driving steel H-piles, approximately 6.00 m long, vibrated into the ground adjacent 

to intersections of the whaler and support beams.  

 

Figure 22: Driving sheet piles for the embankment cutoff wall 

 

The sheets piles were driven in pairs. After 10 pairs are set on the template, the crane and hammer 
vibrated the sheets in a staggered pattern, so that the tip of every sheet was not more than 1.20 to 
1.50m below that of any adjacent pile. After all the piles were driven to near refusal with the vibratory 
hammer, they were later impacted with the impact hammer to the required design elevation or to refusal, 
whichever occurred first. 

 

6.1.6 Berm 

After the construction of the cofferdam was finalized during the first quarter of 2011, the contractor was 
instructed to build a berm in the inboard side of the cofferdam before dewatering. This berm was 
originally included in the drawings and specifications of the contract, but not was a requirement for the 
design of the structure. In figure 23 it can be seen the structure finalized and the excavation works as 
they progressed later that same year. Note the berm already in place in the inboard side of the 
cofferdam. This is condition known as “construction stage”, where all the loads are acting from the 
Miraflores lake side. 

Figure 24 shows the same cofferdam but working in the so called “long term” condition, where all the 

load is acting from the Borinquen dam side. The Panama Canal Authority has been monitoring the 

behavior of the cofferdam since it was built. For this, several prism are located in both sides of the cells 

and they are being monitored monthly using robotic instruments that read the real position of the prisms, 

triggering an alert if a displacement threshold previously set, is exceeded. 
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Figure 23: View of cofferdam from the south side (construction stage)  

 

 

Figure 24: View of cofferdam from the south side (long term condition) 
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