Our ability to make soft materials based on the fundamental principles of self-assembly has led to a rich and varied global interdisciplinary community, particularly in the area of functional supramolecular gels. These gels are formed by the self-assembly of small molecules into one dimensional structures that entangle to form a network. Their applications are broad; gels have been shown to be of value in the life sciences in 3D cell culture, with a number of recent spin-out companies focused in this area but also have promise as new optoelectronic materials. The inherent interdisciplinarity of the field provides opportunities for chemists, physicists, biologists and engineers to work together, but also raises a number of challenges. Exciting new developments are opening up in transient and dynamic gels, and in the techniques used to study these systems – in particular contrast-matched small-angle scattering, cryo-TEM, and super-resolution microscopy. The four themes of this meeting will bring together different research communities and particular emphasis will be placed upon the transfer of learning between the different themes.