Konferenzen zum Thema Neuronale Netze und Künstliche Intelligenz, Maschinelles Lernen überall (Virtuelle Veranstaltung)

Wählen Sie ein Land aus
1
Workshop on Advances in Theory and Algorithms for Deep Reinforcement Learning
02. Aug 2021 - 04. Aug 2021 • Virtually, Überall (Virtuelle Veranstaltung)
Zusammenfassung:
There has been significant progress over the last few years in the theory and applications of Reinforcement Learning (RL). While RL theory and applications have had a rich history going back several decades, the major recent successes have occurred due to a successful marriage between deep learning approaches for function approximation embedded within a reinforcement learning framework for decision-making (Deep RL). On one hand, there has been a richer understanding of Stochastic Gradient Descent (SGD) for non-convex optimization, its impact in driving training error to zero in deep neural networks, and on the generalization ability of such networks for inference. On the other hand, there has been an explosion of research on iterative learning algorithms with strong statistical guarantees in the settings of reinforcement learning, stochastic approximation and multi-armed bandits.
Eintrags-ID:
1423007
2
IJCAI 2021 DSO Workshop — Data Science meets Optimisation (DSO) Workshop at IJCAI-21
21. Aug 2021 • virtual, Überall (Virtuelle Veranstaltung)
Zusammenfassung:
Data science and optimization are closely related. On the one hand, many problems in data science can be solved using optimizers, on the other hand optimization problems stated through classical models such as those from mathematical programming cannot be considered independent of historical data. Examples are ample: Machine Learning (ML) often relies on optimization techniques such as linear or integer programming; reasoning systems have been applied to constrained pattern and sequence mining tasks; a parallel development of metaheuristic approaches has taken place in the domains of data mining and machine learning; methods aimed at high level combinatorial optimization have been shown to strongly profit from configuration, algorithm selection and tuning tools building on historical data; ML models can be embedded in combinatorial optimization problems to address hard-to-model systems, or for validation of the ML model itself; “predict, then optimize” scenarios can be dealt with in an integrated fashion to improve considerably the solution quality.
Eintrags-ID:
1429103
Verwandte Fachgebiete:


Conference-Service.com stellt der Öffentlichkeit ein Kalendarium wichtiger Konferenzen, Symposien und sonstiger Tagungen im wissenschaftlich-technischen Bereich zur Verfügung. Obwohl das Verzeichnis mit großer Sorgfalt zusammengestellt und ständig aktualisiert wird, weisen wir auf die Möglichkeit von Fehlern ausdrücklich hin. Bitte vergewissern Sie sich immer beim Veranstalter, bevor Sie über die Teilnahme oder Nichtteilnahme an einer Konferenz entscheiden.

Stand vom 04. Juni 2021