Konferenzen  >  Mathematik  >  Neuronale Netze und Künstliche Intelligenz, Maschinelles Lernen  >  Großbritannien

Wählen Sie ein Land aus
1
SCLW02 — Reinforcement Learning for Science: Discovery and Automation
19. Mär 2026 - 26. Mär 2026 • Cambridge, Großbritannien
Veranstalter:
Isaac Newton Institute for Mathematical Sciences, Cambridge
Zusammenfassung:
This two-day workshop on Reinforcement Learning for Science: Discovery and Automation, is a follow-up event to the Isaac Newton Institute satellite programme “Bridging Stochastic Control and Reinforcement Learning.” The workshop will bring together leading experts from academia and industry to demonstrate how tailored reinforcement learning (RL) techniques can accelerate scientific discovery and drive engineering automation. It will feature invited talks and panel discussions showcasing how RL can be effectively adapted and integrated into workflows spanning medicine, the physical sciences, robotics, and complex engineering systems. By highlighting practical applications and fostering interdisciplinary dialogue, the workshop aims to catalyze new collaborations and promote the broader adoption of RL in high-impact scientific and engineering contexts.
Eintrags-ID:
1684929
2
GSTW07 — AI in Spectral Geometry, perspectives and directions: the Round Table
20. Apr 2026 • Cambridge, Großbritannien
Veranstalter:
Isaac Newton Institute for Mathematical Sciences, Cambridge
Zusammenfassung:
The purpose of the workshop is to bring together specialists from several communities: spectral geometers, numerical analysts, and researchers working in AI geometric data processing and PDEs. The development of AI based spectral analysis requires a deep interaction between them. Our primary objective is to exchange perspectives and gain a deeper understanding of the potential role that artificial intelligence and geometric data processing may play in addressing research questions in spectral geometry, and ultimately to foster the development of new collaborations. We aim to explore how AI might provide new methods, insights, or tools that could help us tackle some of numerical problems related either to the computation of the spectrum or the optimization of the geometry in relationship with spectral functionals.
Eintrags-ID:
1684914
Verwandte Fachgebiete:
3
Workshop — Imaging inverse problems and generating models: sparsity and robustness versus expressivity
04. Mai 2026 - 07. Mai 2026 • ICMS, Bayes Centre, Edinburgh , Großbritannien
Veranstalter:
The International Centre for Mathematical Sciences (ICMS)
Zusammenfassung:
In the last few years, an important trend has emerged for using data-driven image models, in particular encoded by neural networks. Novel families of hybrid imaging methodologies, mixing data-driven and traditional mathematical approaches (such as optimisation or sampling methods) have flourished. For instance, generative or discriminative networks such as GANS, VAEs or normalising flows, can be either used in optimisation or sampling schemes as data-driven regularisers for solving inverse problems. Similarly, denoising networks or more generally regularising networks can be incorporated into optimisation or sampling schemes leading to Plug-and-Play methods. From another perspective, unrolled optimisation approaches have been investigated to provide robust network architectures as alternative to traditional black-box end-to-end networks. All these approaches have shown a remarkable versatility and efficiency to solve inverse imaging problems.
Eintrags-ID:
1670197
4
CIFW04 — Causality and machine learning
15. Jun 2026 - 19. Jun 2026 • Cambridge, Großbritannien
Veranstalter:
Isaac Newton Institute for Mathematical Sciences, Cambridge
Zusammenfassung:
This workshop explores recent advances in the use of flexible machine learning techniques alongside semiparametric and nonparametric statistical methods in causal inference. Recent methodological work has focused on combining modern machine learning tools with the inferential rigor of semiparametric and nonparametric frameworks to estimate causal parameters in complex, high-dimensional settings. The aim is to move beyond the predictive focus typical of standard machine learning, and instead develop estimators that enable valid causal inference while achieving desirable statistical properties such as efficiency and robustness. The workshop will highlight cutting-edge developments and foster discussion on future directions in this rapidly evolving area.
Eintrags-ID:
1684933
Verwandte Fachgebiete:
5
2nd IMA Congress — AI Unlocked: Innovation, Insight and Impact
17. Sep 2026 - 18. Sep 2026 • Birmingham, Großbritannien
Veranstalter:
Institute of Mathematics & its Applications (IMA)
Zusammenfassung:
AI Unlocked 2026, will bring together the brightest minds from academia, industry, and government to explore the power, promise and purpose of artificial intelligence. This two-day congress, chaired by Dr. Anjulika Salhan, a global expert in AI-driven innovation and founder of Systems Holdings, will be held at the prestigious Hyatt Regency in Birmingham. We invite you to join a dynamic community of AI pioneers shaping the future of machine learning and intelligent systems. World-class speakers from across sectors will share their research, breakthroughs, and real-world applications of AI, ranging from deep learning architectures and causal models to AI in finance, healthcare, governance, and regulation.
Eintrags-ID:
1682215


Conference-Service.com stellt der Öffentlichkeit ein Kalendarium wichtiger Konferenzen, Symposien und sonstiger Tagungen im wissenschaftlich-technischen Bereich zur Verfügung. Obwohl das Verzeichnis mit großer Sorgfalt zusammengestellt und ständig aktualisiert wird, weisen wir auf die Möglichkeit von Fehlern ausdrücklich hin. Bitte vergewissern Sie sich immer beim Veranstalter, bevor Sie über die Teilnahme oder Nichtteilnahme an einer Konferenz entscheiden.

Kein Tracking | Keine Pop-ups | Keine Animationen
Stand vom 25. November 2025