Conférences  >  Mathématiques  >  Réseaux de neurones et intelligence artificielle, apprentissage automatique  >  Royaume-Uni

Sélecionner un pays
1
SCLW02 — Reinforcement Learning for Science: Discovery and Automation
19 mar 2026 - 26 mar 2026 • Cambridge, Royaume-Uni
Organisateur:
Isaac Newton Institute for Mathematical Sciences, Cambridge
Résumé:
This two-day workshop on Reinforcement Learning for Science: Discovery and Automation, is a follow-up event to the Isaac Newton Institute satellite programme “Bridging Stochastic Control and Reinforcement Learning.” The workshop will bring together leading experts from academia and industry to demonstrate how tailored reinforcement learning (RL) techniques can accelerate scientific discovery and drive engineering automation. It will feature invited talks and panel discussions showcasing how RL can be effectively adapted and integrated into workflows spanning medicine, the physical sciences, robotics, and complex engineering systems. By highlighting practical applications and fostering interdisciplinary dialogue, the workshop aims to catalyze new collaborations and promote the broader adoption of RL in high-impact scientific and engineering contexts.
Identifiant de l'évènement:
1684907
2
GSTW07 — AI in Spectral Geometry, perspectives and directions: the Round Table
20 avr 2026 • Cambridge, Royaume-Uni
Organisateur:
Isaac Newton Institute for Mathematical Sciences, Cambridge
Résumé:
The purpose of the workshop is to bring together specialists from several communities: spectral geometers, numerical analysts, and researchers working in AI geometric data processing and PDEs. The development of AI based spectral analysis requires a deep interaction between them. Our primary objective is to exchange perspectives and gain a deeper understanding of the potential role that artificial intelligence and geometric data processing may play in addressing research questions in spectral geometry, and ultimately to foster the development of new collaborations. We aim to explore how AI might provide new methods, insights, or tools that could help us tackle some of numerical problems related either to the computation of the spectrum or the optimization of the geometry in relationship with spectral functionals.
Identifiant de l'évènement:
1684947
Sujets apparentés:
3
Workshop — Imaging inverse problems and generating models: sparsity and robustness versus expressivity
04 mai 2026 - 07 mai 2026 • ICMS, Bayes Centre, Edinburgh , Royaume-Uni
Organisateur:
The International Centre for Mathematical Sciences (ICMS)
Résumé:
In the last few years, an important trend has emerged for using data-driven image models, in particular encoded by neural networks. Novel families of hybrid imaging methodologies, mixing data-driven and traditional mathematical approaches (such as optimisation or sampling methods) have flourished. For instance, generative or discriminative networks such as GANS, VAEs or normalising flows, can be either used in optimisation or sampling schemes as data-driven regularisers for solving inverse problems. Similarly, denoising networks or more generally regularising networks can be incorporated into optimisation or sampling schemes leading to Plug-and-Play methods. From another perspective, unrolled optimisation approaches have been investigated to provide robust network architectures as alternative to traditional black-box end-to-end networks. All these approaches have shown a remarkable versatility and efficiency to solve inverse imaging problems.
Identifiant de l'évènement:
1670164
4
CIFW04 — Causality and machine learning
15 jui 2026 - 19 jui 2026 • Cambridge, Royaume-Uni
Organisateur:
Isaac Newton Institute for Mathematical Sciences, Cambridge
Résumé:
This workshop explores recent advances in the use of flexible machine learning techniques alongside semiparametric and nonparametric statistical methods in causal inference. Recent methodological work has focused on combining modern machine learning tools with the inferential rigor of semiparametric and nonparametric frameworks to estimate causal parameters in complex, high-dimensional settings. The aim is to move beyond the predictive focus typical of standard machine learning, and instead develop estimators that enable valid causal inference while achieving desirable statistical properties such as efficiency and robustness. The workshop will highlight cutting-edge developments and foster discussion on future directions in this rapidly evolving area.
Identifiant de l'évènement:
1684999
Sujets apparentés:
5
2nd IMA Congress — AI Unlocked: Innovation, Insight and Impact
17 sep 2026 - 18 sep 2026 • Birmingham, Royaume-Uni
Organisateur:
Institute of Mathematics & its Applications (IMA)
Résumé:
AI Unlocked 2026, will bring together the brightest minds from academia, industry, and government to explore the power, promise and purpose of artificial intelligence. This two-day congress, chaired by Dr. Anjulika Salhan, a global expert in AI-driven innovation and founder of Systems Holdings, will be held at the prestigious Hyatt Regency in Birmingham. We invite you to join a dynamic community of AI pioneers shaping the future of machine learning and intelligent systems. World-class speakers from across sectors will share their research, breakthroughs, and real-world applications of AI, ranging from deep learning architectures and causal models to AI in finance, healthcare, governance, and regulation.
Identifiant de l'évènement:
1682193


Conference-Service.com met à la disposition de ses visiteurs des listes de conférences et réunions dans le domaine scientifique. Ces listes sont publiées pour le bénéfice des personnes qui cherchent une conférence, mais aussi, bien sûr, pour celui des organisateurs. Noter que, malgré tout le soin que nous apportons à la vérification des données entrées dans nos listes, nous ne pouvons accepter de responsabilité en ce qui concerne leur exactitude ou étendue. Pensez donc à vérifier les informations présentées avec les organisateurs de la conférence ou de la réunion avant de vous engager à y participer!

Y'a pas de suivi | Y'a pas de pop-ups | Y'a pas d'animations
Dernière mise à jour: 25 novembre 2025