Modelling physical properties of rocks based on microstructure derived from X-ray microtomographic images (known as digital rock physics) is an important technology in geophysical rock characterization. However, these images are most commonly obtained at room pressure and temperature conditions. Consequently, most digital rock physics models are not representative of the rocks at depth. Reservoir rocks are at such depth that they experience high stresses and temperatures. The thermodynamic properties of the fluids inside the reservoir are pressure and temperature dependent, therefore transport properties are also temperature and pressure dependent. Moreover, it is well established that elastic rock properties of rocks are strongly affected by stress and/or fluid distribution. Thus, in order to acquire realistic pore network structures and fluid distributions (including, but not limited to, residual saturation) and to reliably estimate transport and elastic properties from micro images, rocks with fluids inside have to be imaged at reservoir pressure and temperature conditions. In this lecture, we will discuss the ways how to obtain 3D images under elevated temperature and stress conditions, as well the challenges with the imaging and further image processing. Finally, we will provide some results to demonstrate how microstructure of the rocks can be link to transport and elastic properties of rocks measured on bigger samples. The lecture maybe useful to rock physicist, petrophysics, and reservoir engineers.